Demand Forecasting of Individual Probability Density Functions with Machine Learning

نویسندگان

چکیده

Demand forecasting is a central component of the replenishment process for retailers, as it provides crucial input subsequent decision making like ordering processes. In contrast to point estimates, such conditional mean underlying probability distribution, or confidence intervals, complete density functions allows investigate impact on operational metrics, which are important define business strategy, over full range expected demand. Whereas metrics evaluating estimates widely used, methods assessing accuracy predicted distributions rare, and this work proposes new techniques both qualitative quantitative evaluation methods. Using supervised machine learning method "Cyclic Boosting", individual can be that each prediction fully explainable. This particular importance practitioners, avoid "black-box" models understand contributing factors prediction. Another aspect in terms explainability generalizability demand limitation influence temporal confounding, prevalent most state art approaches.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of machine learning techniques for supply chain demand forecasting

Full collaboration in supply chains is an ideal that the participant firms should try to achieve. However, a number of factors hamper real progress in this direction. Therefore, there is a need for forecasting demand by the participants in the absence of full information about other participants’ demand. In this paper we investigate the applicability of advanced machine learning techniques, inc...

متن کامل

Forecasting Supply Chain Demand Using Machine Learning Algorithms

Managing supply chains in today’s complex, dynamic, and uncertain environment is one of the key challenges affecting the success of the businesses. One of the crucial determinants of effective supply chain management is the ability to recognize customer demand patterns and react accordingly to the changes in face of intense competition. Thus the ability to adequately predict demand by the parti...

متن کامل

Machine Learning-Based Demand Forecasting in Supply Chains

Effective supply chain management is one of the key determinants of success of today’s businesses. However, communication patterns between participants that emerge in a supply chain tend to distort the original consumer’s demand and create high levels of noise. In this article, we compare the performance of new machine learning (ML)-based forecasting techniques with the more traditional methods...

متن کامل

Consumer credit risk: Individual probability estimates using machine learning

Consumer credit scoring is often considered a classification task where clients receive either a good or a bad credit status. Default probabilities provide more detailed information about the creditworthiness of consumers, and they are usually estimated by logistic regression. Here, we present a general framework for estimating individual consumer credit risks by use of machine learning methods...

متن کامل

METAPHOR: Probability density estimation for machine learning based photometric redshifts

We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based on the MLPQNA neural network as internal engine to derive photometric galaxy redshifts, but giving the possibility to easily replace MLPQNA with any...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operations Research Forum

سال: 2021

ISSN: ['2662-2556']

DOI: https://doi.org/10.1007/s43069-021-00079-8